11 research outputs found

    The Data Acquisition System for the KOTO Experiment

    Full text link
    We developed and built a new system of readout and trigger electronics, based on the waveform digitization and pipeline readout, for the KOTO experiment at J-PARC, Japan. KOTO aims at observing the rare kaon decay KLπ0ννˉK_{L}\rightarrow\pi^{0}\nu\bar{\nu}. A total of 4000 readout channels from various detector subsystems are digitized by 14-bit 125-MHz ADC modules equipped with a 10-pole Bessel filter in order to reduce the pile-up effects. The trigger decision is made every 8-ns using the digitized waveform information. To avoid dead time, the ADC and trigger modules have pipelines in their FPGA chips to store data while waiting for the trigger decision. The KOTO experiment performed the first physics run in May 2013. The data acquisition system worked stably during the run.Comment: 5 pages,12 figures, Transactions on Nuclear Science, Proceedings of the 19th Real Time Conference, Preprin

    Dark Energy Spectroscopic Instrument (DESI) Fiber Positioner Production

    Full text link
    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique. The spectra of 35 million galaxies and quasars over 14000 sq deg will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs. We will describe the production and manufacturing processes developed for the 5000 fiber positioner robots mounted on the focal plane of the Mayall telescope.Comment: SPIE 201

    The Data Acquisition System for the KOTO Detector

    Get PDF
    AbstractThe Data Acquisition (DAQ) for the KOTO detector is designed around a 14-bit 125MHz ADC module, which measures the energy and the time of photomultiplier pulses from about 4000 readout channels. The Trigger has a two-tiered design, with a first level decision based on the time-aligned energy sum over the entire calorimeter and a second level decision based on clustering and in-time veto signal rejection. Data accepted by the second level trigger are read out via Gigabit Ethernet and passed to a computer farm for event building and data storage

    Radiation-Hard Power Electronics for the ATLAS New Small Wheel

    No full text
    The New Small Wheel (NSW) is an upgrade for enhanced triggering and reconstruction of muons in the ATLAS forward region. The large LV power demands of the NSW necessitate a point-of-load architecture with on-detector power conversion. The radiation load and magnetic field of this environment, while significant, are nevertheless still in the range where commercial-off-the-shelf power devices may suffice. We present studies on the radiation-hardness and magnetic-field tolerance of several candidate buck converters and linear regulators. Device survival and performance are characterized when exposed to gamma radiation, neutrons, protons and magnetic fields

    The DESI fiber positioner system

    No full text
    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the baryon acoustic oscillation technique. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5,000 fiber optic positioners feeding ten broad-band spectrographs. The positioners have eccentric axis kinematics. Actuation is provided by two 4 mm diameter DC brushless gear-motors. An attached electronics board accepts a DC voltage for power and CAN messages for communications and drives the two motors. The positioner accepts the ferrulized and polished fiber and provides a mechanically safe path through its internal mechanism. Positioning is rapid and accurate with typical RMS errors of less than 5 mu m

    The Robotic Multi-Object Focal Plane System of the Dark Energy Spectroscopic Instrument (DESI)

    No full text
    A system of 5,020 robotic fiber positioners was installed in 2019 on the Mayall Telescope, at Kitt Peak National Observatory. The robots automatically re-target their optical fibers every 10 - 20 minutes, each to a precision of several microns, with a reconfiguration time less than 2 minutes. Over the next five years, they will enable the newly-constructed Dark Energy Spectroscopic Instrument (DESI) to measure the spectra of 35 million galaxies and quasars. DESI will produce the largest 3D map of the universe to date and measure the expansion history of the cosmos. In addition to the 5,020 robotic positioners and optical fibers, DESI's Focal Plane System includes 6 guide cameras, 4 wavefront cameras, 123 fiducial point sources, and a metrology camera mounted at the primary mirror. The system also includes associated structural, thermal, and electrical systems. In all, it contains over 675,000 individual parts. We discuss the design, construction, quality control, and integration of all these components. We include a summary of the key requirements, the review and acceptance process, on-sky validations of requirements, and lessons learned for future multi-object, fiber-fed spectrographs

    The Robotic Multi-Object Focal Plane System of the Dark Energy Spectroscopic Instrument (DESI)

    No full text
    International audienceA system of 5,020 robotic fiber positioners was installed in 2019 on the Mayall Telescope, at Kitt Peak National Observatory. The robots automatically re-target their optical fibers every 10 - 20 minutes, each to a precision of several microns, with a reconfiguration time less than 2 minutes. Over the next five years, they will enable the newly-constructed Dark Energy Spectroscopic Instrument (DESI) to measure the spectra of 35 million galaxies and quasars. DESI will produce the largest 3D map of the universe to date and measure the expansion history of the cosmos. In addition to the 5,020 robotic positioners and optical fibers, DESI's Focal Plane System includes 6 guide cameras, 4 wavefront cameras, 123 fiducial point sources, and a metrology camera mounted at the primary mirror. The system also includes associated structural, thermal, and electrical systems. In all, it contains over 675,000 individual parts. We discuss the design, construction, quality control, and integration of all these components. We include a summary of the key requirements, the review and acceptance process, on-sky validations of requirements, and lessons learned for future multi-object, fiber-fed spectrographs
    corecore